Jahrgangsstufe 8		
Formel / Gesetz Einheiten	Physikalische Größen	Einfache Aufgabe
$v = \frac{\triangle S}{\triangle t}$	Geschwindigkeit v zurückgelegter Weg \(\triangle s \) benötigte Zeit \(\triangle t \)	Ein PKW fährt mit $65 \frac{km}{h}$. Wie lange braucht er für 14 km?
$f = \frac{1}{T} = \frac{n}{t}$ $[f] = \frac{1}{s} = Hz$	Frequenz f Schwingungsdauer T Anzahl n der Schwingungen und dafür benötigte Zeit t	Hunde haben eine obere Hörgrenze bei der Schwingungsdauer 0,017 ms. Welcher Frequenz in kHz entspricht das?
$F_G = m \cdot g$ $[F]=1N$ $[m]=kg$	Gewichtskraft F_G Masse m Ortsfaktor $g = 9.81 \frac{N}{kg}$	Welche Gewichtskraft gehört zur Masse einer Tafel Schokolade (100g)? Welche Masse gehört zu einer Gewichtskraft von 0,69 kN?
$F \sim s$ $F = D \cdot s$	Hookesches Gesetz Kraft F an Feder und Dehnung s der Feder sind zueinander proportional. Federkonstante D	Hängt man an eine Feder ein Massestück von 50g, so wird sie um 3,2cm gedehnt. Wie groß ist die Federhärte? Welche Dehnung verursacht eine Kraft von 2,5N?
$M = F \cdot a$ Hebelgesetz $M_l = M_r$	Drehmoment M Kraft F, Hebelarm a Im Gleichgewicht gilt das Hebelgesetz	Entwerfe ein Mobile mit zwei masselosen Strohalmen geeigneter Länge, masselosen Fäden und den drei Massen 20g, 30g und 40g.
Kräfteaddition $\overrightarrow{F_1} + \overrightarrow{F_2} = \overrightarrow{F_{res}}$	Zwei Kräfte, die an einem Punkt angreifen, werden vektoriell addiert. (Kräfteparallelogramm)	Welchen Winkel müssen zwei Kräfte mit den Beträgen 5,0N und 6,0N zueinander einnehmen, so dass die resultierende Kraft genau 4,0N beträgt? (Zeichnerische Lösung!)
Kräftezerlegung z.B. Schiefe Ebene $\overrightarrow{F_G} = \overrightarrow{F_H} + \overrightarrow{F_N}$	Eine Kraft kann man mit Hilfe eines Kräfteparallelogramms in Ersatzkräfte zerlegen. F_H Hangabtriebskraft F_N Normalkraft	Wie groß ist die Hangabtriebskraft eines PKW (1,2 t) an einer Straße der Steigung von 8,0% ? (Zeichnerische Lösung!)
$ \rho = \frac{m}{V} $	Dichte <i>ρ</i> Masse m, Volumen V	Die Dichte von Sand beträgt $1.5 \frac{kg}{dm^3}$. Wie viele m ³ Sand darf man auf einen Güterwagen mit der maximalen Zuladung von 10t aufladen?

$p = \frac{F}{A}$ $[p] = \frac{N}{m^2} = Pa$	Druck p Fläche A und Kraft F (senkrecht zu dieser Fläche) 1 mbar = 1 hPa	Das Gas in einer Taucherflasche steht unter einem Druck von 200 bar. Welche Kraft wirkt auf die 360 cm ² große Bodenfläche der Flasche?
$p_s = \rho \cdot g \cdot h$	Schweredruck p_s in der Tiefe h einer Flüssigkeit (eines Gases) der Dichte ρ (Ortsfaktor g)	Der normale Luftdruck beträgt 1013 hPa. Welcher Druck herrscht am Boden eines Schwimmbeckens der Tiefe 2,80m?
$F_A = F_{Fl}$	Auftriebskraft F_A in einer Flüssigkeit (bzw. in einem Gas) entspricht der Gewichtskraft der verdrängten Flüssigkeit F_{Fl} .	Die Dichte von Meerwasser beträgt $1,03\frac{g}{cm^3}$, die von Eis dagegen $0,917\frac{g}{cm^3}$. Welcher (Volumen-)Prozentsatz eines Eisberges ragt aus dem Wasser?