
Q12 * Astrophysik * Scheinbare Helligkeit

scheinbare Helligkeit in mag	Objekt
-26.73	Sonne
-12.6	Vollmond
-6.0	Supernova SN 1054 im Krabbennebel, 6500 Lichtjahre entfernt
-4.7	Größte Helligkeit der Venus und der ISS
-3.0	Größte Helligkeit des Mars
-2.8	Größte Helligkeit von Jupiter
-1.47	Der hellste Stern: Sirius
-0.24	Größte Helligkeit von Saturn
-0.01	α Centauri A
0,03	Der "Nullpunkt": Wega
0.112	Rigel
1.09	Antares
2.01	Polaris
2,3	Mizar
3,99	Alkor
5.1	Größte Helligkeit des Asteroiden Vesta
5.5	Größte Helligkeit von Uranus
6.5	Schwächster noch mit bloßem Auge unter perfekten Bedingungen sichtbarer Stern
7.7	Größte Helligkeit von Neptun
12.9	Hellster Quasar 3C 273 in 2.4 Gigalichtjahren Distanz
13.65	Größte Helligkeit von Pluto
18.7	Derzeitige Helligkeit des Zwergplaneten Eris
23	Größte Helligkeit von Plutos Monden Hydra und Nix
27	Schwächste Objekte mit 8m- Keck- Teleskop
30	Schwächstes Objekt im Hubble Weltraumteleskop
35	Sedna im Aphel

Aufgaben:

- 1. Welche scheinbare Helligkeit hat die Sonne vom Neptun aus betrachtet ($r_{Neptun} = 30 \text{ AE}$)?
- 2. Wie groß ist die Beleuchtungsstärke des Vollmondes?
- 3. Welche Beleuchtungsstärke kann ein menschliches Auge gerade noch wahrnehmen?
- 4. Um wie viel ist die Beleuchtungsstärke von Sirius größer als die von Polaris?
- 5. Zeigen Sie:

Aus
$$m_1 - m_2 = -2.5 \cdot \lg \frac{E_1}{E_2}$$
 folgt $\frac{E_1}{E_2} = q^{m_2 - m_1}$ mit $q = \sqrt[5]{100} \approx 2.512$

- 6. Zeigen Sie: Eine scheinbare Helligkeitsdifferenz von 5 Magnituden bedeutet, dass sich die Beleuchtungsstärken um den Faktor 100 unterscheiden.
- 7. Mit welcher scheinbaren Helligkeit könnte man unsere Sonne aus einer Entfernung von 10 parsec beobachten?

Q12 * Astrophysik * Scheinbare Helligkeit * Lösungen zu den Aufgaben

1.
$$m(30AE) - m(1,0AE) = -2.5 \cdot \lg\left(\frac{E_{\odot}(30AE)}{E_{\odot}(1,0AE)}\right)$$
; we gen $\frac{E_{\odot}(30AE)}{E_{\odot}(1,0AE)} = \frac{1,0^2}{30^2} \Rightarrow$
 $m(30AE) - (-26,73) = -2.5 \cdot \lg\left(\frac{1}{30^2}\right) \Rightarrow m(30AE) = -26,73 - 2.5 \cdot \lg\left(\frac{1}{900}\right) = -19,3$

$$\begin{split} 2. \ \ \frac{E_{Mond}}{E_{\odot}} &= q^{m_{\odot} - m_{Mond}} \quad mit \ E_{\odot} = S = 1,367 \frac{kW}{m^2} \implies \\ E_{Mond} &= S \cdot q^{m_{\odot} - m_{Mond}} = 1,367 \frac{kW}{m^2} \cdot \left(\sqrt[5]{100}\right)^{-26,73 + 12,6} = 3,05 \cdot 10^{-3} \frac{W}{m^2} \end{split}$$

3.
$$\frac{E_{\text{noch beobachtbar}}}{E_{\odot}} = \frac{E_{\text{nb}}}{E_{\odot}} = q^{m_{\odot} - m_{\text{nb}}} \quad \text{mit} \quad E_{\odot} = S = 1,367 \frac{kW}{m^2} \implies$$

$$E_{\text{nb}} = S \cdot q^{m_{\odot} - m_{\text{nb}}} = 1,367 \frac{kW}{m^2} \cdot \left(\sqrt[5]{100}\right)^{-26,73 - 6,5} = 7,0 \cdot 10^{-11} \frac{W}{m^2}$$

$$4. \ \frac{E_{\text{Sirius}}}{E_{\text{Polaris}}} = q^{m_{\text{Polaris}} - m_{\text{Sirius}}} = \left(\sqrt[5]{100}\right)^{2,01 - (-1,47)} = \left(100^{0,2}\right)^{3,48} = 100^{0,2 \cdot 3,48} = 24,7$$

Die Beleuchtungsstärke von Sirius ist etwa 25mal so groß wie die von Polaris.

$$5. \ m_1 - m_2 = -2, \\ 5 \cdot lg \frac{E_1}{E_2} \implies \frac{m_1 - m_2}{-2, 5} = lg \frac{E_1}{E_2} \implies \frac{2}{5} \cdot (m_2 - m_1) = lg \frac{E_1}{E_2} \implies \\ \frac{E_1}{E_2} = 10^{\frac{2}{5} \cdot (m_2 - m_1)} = \left(\sqrt[5]{10^2}\right)^{m_2 - m_1} = q^{m_2 - m_1} \quad mit \quad q = \sqrt[5]{100}$$

6.
$$\Delta m = m_2 - m_1 = 5,0 \implies \frac{E_1}{E_2} = q^{m_2 - m_1} = \left(\sqrt[5]{100}\right)^5 = 100 \text{ also } E_1 = 100 \cdot E_2$$

7.
$$10 \text{ par sec} = 10 \cdot 3,26 \text{ Lj} = 10 \cdot 3,26 \cdot 365 \cdot 24 \cdot 3600 \text{s} \cdot 3,0 \cdot 10^8 \frac{\text{m}}{\text{s}} = 3,08 \cdot 10^{17} \text{ m} = \frac{3,08 \cdot 10^{17} \text{ m}}{150 \cdot 10^9 \text{ m}} \text{AE} = 2,06 \cdot 10^6 \text{ AE}$$

$$m(2,06 \cdot 10^6 \text{ AE}) - m(1,0 \text{AE}) = -2,5 \cdot \text{lg} \left(\frac{\text{E}_{\odot}(2,06 \cdot 10^6 \text{ AE})}{\text{E}_{\odot}(1,0 \text{AE})} \right) ;$$

$$\text{wegen } \frac{\text{E}_{\odot}(2,06 \cdot 10^6 \text{ AE})}{\text{E}_{\odot}(1,0 \text{AE})} = \frac{1,0^2}{(2,06 \cdot 10^6)^2} \Rightarrow$$

$$m(2,06 \cdot 10^6 \text{ AE}) - m(1,0 \text{AE}) = -2,5 \cdot \text{lg} \left(\frac{1}{(2,06 \cdot 10^6)^2} \right) \Rightarrow$$

$$m(2,06 \cdot 10^6 \text{ AE}) = m(1,0 \text{AE}) - 2,5 \cdot \text{lg} \left(\frac{1}{(2,06 \cdot 10^6)^2} \right) = -26,73 + 31,57 = 4,8$$