Q11 * Mathematik * Anwendungsaufgaben zur Ableitung einer Funktion

Physik

Für die Geschwindigkeit v eines Körpers gilt: $v(t_o) \approx \frac{\Delta x}{\Delta t} = \frac{x_1 - x_o}{t_o - t}$

$$\Delta t \qquad t_1 - t_o$$

$$x_1 - x_o \qquad dx \qquad \bullet$$

Mit mathematischer Grenzwertbildung folgt: $v(t_o) = \lim_{t_1 \to t_o} \frac{x_1 - x_o}{t_1 - t_o} = \frac{dx}{dt}(t_o) = x(t_o)$

 $x(t_a)$ gibt dabei die Ableitung der Orts-Funktion x = x(t) nach der Zeit t an.

Entsprechend gilt für die Beschleunigung a dieses Körpers:

$$a(t_o) \approx \frac{\triangle v}{\triangle t} = \frac{v_1 - v_o}{t_1 - t_o} \quad \text{und damit} \quad a(t_o) = \lim_{t_1 \to t_o} \frac{v_1 - v_o}{t_1 - t_o} = \frac{dv}{dt}(t_o) = v(t_o) = x(t_o)$$

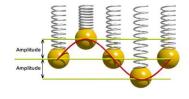
 $x(t_a)$ gibt dabei die zweite Ableitung der Orts-Funktion x = x(t) an.

Mit dem zweiten newtonschen Gesetz gilt also: $F(t) = m \cdot a(t) = m \cdot v(t) = m \cdot x(t)$

1. a) Begründen Sie, dass für eine Bewegung (in x-Richtung) mit der konstanten Beschleunigung a (in x-Richtung) die Ortsfunktion x = x(t) folgendermaßen lautet:

$$x = x(t) = x_o + v_o \cdot t + \frac{1}{2} \cdot a \cdot t^2$$
. Welche Bedeutung haben dabei x_o und v_o ?

- b) Ein Ball der Masse 500g wird mit der Anfangsgeschwindigkeit 15 ms⁻¹ nach oben geworfen. Welche Höhe und Geschwindigkeit hat der Ball nach 1,0s? Welche maximale Höhe erreicht er und wann schlägt er wieder am Boden auf? (g = 10 ms⁻²)
- 2. Die Auslenkung y eines Federpendels, das mit der Amplitude A = 5,0cm und der Schwingungsdauer T = 3,0s schwingt, lautet $y(t) = 5,0cm \cdot \sin(\frac{2\pi}{3.0s} \cdot t)$.



- a) Bestimmen Sie die maximale Geschwindigkeit nach "oben". Wann tritt diese Geschwindigkeit jeweils auf?
- b) Bestimmen Sie zum Zeitpunkt $t_1 = 2,6s$ die Auslenkung $y(t_1)$, die Geschwindigkeit $v(t_1)$ und die Beschleunigung $a(t_1)$.
- c) Welche maximale Beschleunigung erfährt der Pendelkörper? Bei welcher Auslenkung tritt diese maximale Beschleunigung auf?

Wirtschaft

3. Die Herstellungskosten einer Anzahl x gleicher Geräte wird durch die Kostenfunktion K(x) beschrieben.

Es gelte z.B.
$$K(x) = (0.0015 x^3 - 1.8 x^2 + 820 x + 5000) \in$$

- a) Überlegen Sie, welche Kosten durch jeden einzelnen der in K(x) auftretenden Terme beschrieben wird. (Vorzeichen beachten!)
- b) Die Ableitung K'(x) wird Grenzkostenfunktion genannt. Begründen Sie, dass K'(x) angenähert angibt, welche Kosten für die Herstellung des Geräts mit der Nummer x+1 anfallen.
- c) Bestimmen Sie die Grenzkostenfunktion für unser Beispiel. Für welche Anzahl x ergeben sich die kleinsten Grenzkosten?
- d) Für welche Anzahl an hergestellten Geräten liegen die Grenzkosten unter 150 €?

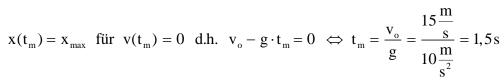
Q11 * Mathematik * Anwendungsaufgaben zur Ableitung einer Funktion

- 1. a) x(t) setzt sich additiv aus den Teilen x_o (Ort zum Zeitpunkt 0), $v_o \cdot t$ (Ortszunahme aufgrund der Anfangsgeschwindigkeit v_o) und $0.5 \cdot a \cdot t^2$ (Ortszunahme aufgrund einer konstanten Beschleunigung a) zusammen
 - b) $x(t) = v_o \cdot t \frac{1}{2} \cdot g \cdot t^2$ mit $v_o = 15 \frac{m}{s}$ und $g = 9.8 \frac{m}{s^2} \approx 10 \frac{m}{s^2}$

$$x(1,0s) = 15 \frac{m}{s} \cdot 1,0s - \frac{1}{2} \cdot 10 \frac{m}{s^2} \cdot (1,0s)^2 = 15 m - 5,0 m = 10 m$$

$$v(t) = \overset{\bullet}{x}(t) = v_o - \frac{1}{2} \cdot g \cdot 2t = v_o - g \cdot t$$
 und

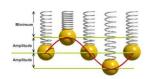
$$v(1,0s) = 15 \frac{m}{s} - 10 \frac{m}{s^2} \cdot 1,0s = 5,0 \frac{m}{s}$$
 (nach oben)



$$x_{max} = x(t_m) = x(1,5s) = 15\frac{m}{s} \cdot 1,5s - \frac{1}{2} \cdot 10\frac{m}{s^2} \cdot (1,5s)^2 = 11,25 \text{ m} \approx 11 \text{ m}$$

- 2. $y(t) = 5.0 \text{cm} \cdot \sin(\frac{2\pi}{3.0 \text{s}} \cdot t)$; $v(t) = \dot{y}(t) = 5.0 \text{cm} \cdot \frac{2\pi}{3.0 \text{s}} \cdot \cos(\frac{2\pi}{3.0 \text{s}} \cdot t) = \frac{10\pi \text{ cm}}{3.0 \text{s}} \cdot \cos(\frac{2\pi}{3.0 \text{s}} \cdot t)$
 - a) $v_{\text{max}} = \frac{10 \pi \text{ cm}}{3.0 \text{ s}} = 10,47... \frac{\text{cm}}{\text{s}} \approx 10 \frac{\text{cm}}{\text{s}}$ und

 v_{max} tritt auf für $\frac{2\pi}{3.0s} \cdot t_k = k \cdot 2\pi$ d.h. für $t_k = k \cdot 3.0s$ mit $k \in N$



b) $y(t_1) = y(2.6s) = 5.0cm \cdot sin(\frac{2\pi}{3.0s} \cdot 2.6s) = -3.715...cm \approx -3.7cm$

$$v(t_1) = \frac{10\pi \text{ cm}}{3.0 \text{ s}} \cdot \cos(\frac{2\pi}{3.0 \text{ s}} \cdot 2.6 \text{ s}) = 7,007...\text{ cm} \approx 7,0 \text{ cm}$$

$$a(t_1) = v(t_1) = -\frac{10\pi \, \text{cm}}{3.0 \, \text{s}} \cdot \frac{2\pi}{3.0 \, \text{s}} \cdot \sin\left(\frac{2\pi}{3.0 \, \text{s}} \cdot 2.6 \, \text{s}\right) = -16.29... \frac{\text{cm}}{\text{s}^2} \approx -16 \frac{\text{cm}}{\text{s}^2}$$

- c) $a_{max} = \frac{10\pi \text{ cm}}{3.0 \text{ s}} \cdot \frac{2\pi}{3.0 \text{ s}} = 21.93...\frac{\text{cm}}{\text{s}^2} \approx 22 \frac{\text{cm}}{\text{s}^2}$ tritt immer bei maximaler Auslenkung auf.
- 3. a) 5000 Fixkosten, z.B. Ausgaben für Gebäude

820x Kosten, die proportional zur Stückzahl sind (Rohstoffe, Energie, Arbeitsleistung)
- 1,8x² Einspareffekte durch Mengenrabatte, höherer Output pro Zeit durch Lerneffekte
0,0015x³ Merkosten für Überstunden bzw. zusätzliche Lagerhaltung bei hoher Stückzahl

- b) $K'(x) \approx \frac{K(x+1) K(x)}{(x+1) x} = K(x+1) K(x) \triangleq \text{Kosten für das Gerät } x+1$
- c) $K'(x) = (0.0045x^2 3.6x + 820) \in$

kleinste Grenzkosten für $K''(x) = 0 \Leftrightarrow 0,009x - 3,6 = 0 \Leftrightarrow x = 400$

 $d) \ \ K'(x) < 150 \, \in \ \ 0.0045 x^2 \, -3.6 \, x \, + \, 820 < 150 \ \ \Leftrightarrow \ \ 0.0045 x^2 \, -3.6 \, x \, + \, 670 < \, 0$

Berechne $0.0045x^2 - 3.6x + 670 = 0 \iff x_{1/2} = \frac{1}{0.009} \cdot (3.6 \pm \sqrt{3.6^2 - 4.0,0045.670})$

 $x_1 = 505, 4...$ und $x_2 = 294, 5...$ d.h. für eine Stückzahl x mit $295 \le x \le 505$ liegen die Stückkosten unter $150 \in$.